1. 建筑设计方面
在建筑设计中考虑气候与因素早已成为设计中的一面指导原则。20世纪60年代以后大力提倡生物气候地方主义的建筑师有印度的C·柯里亚和马来西亚的杨经文。柯里亚提出形式追随气候的设计方法论,来适应印度各个地区的干热或湿热气候。他设计的E-mail总部大楼和MRF大厦即属此例。杨经文认为传统建筑学没有把建筑看作是生命循环系统的有机部分,没有从生态的角度来研究建筑学科的发展,而生态建筑学要求建筑师和设计者有足够的生态学和环境生物学方面的知识,进行研究和设计时应与生态学相结合。在此基础上,他在高层建筑中结合东南亚的气候条件形成一套独特的设计理念和手法;如在高层建筑中引入绿化开敞空间,设计两层皮的外墙,形成复合空间或空气间层;屋顶设置遮阳格片的屋顶花园;利用中庭和两层皮创造自然通风等。主要代表作有他给自己设计建造的住宅、梅纳拉商厦和马来西亚IBM大厦等,这都较为完整地体现了他的设计思想。
20世纪1973年爆发了石油危机,1974年即召开了首次国际被动式太阳能大会,主是通过对太阳能供热,包括太阳能集热器技术和太阳能温室的开发利用,减少对不可再生能源的依赖。在太阳能住宅发展的基础上进一步出现了综合考虑能源的节能住宅,提高了建材的保温隔热性能,如采用中空玻璃的玻璃窗、外墙、屋顶设置保温层(保温材料采用聚苯乙烯等)。80年代出现了不少现代覆土建筑,多数是住宅,也有图书馆、博物馆等公共建筑。即使采用了更多的机械通风与人工照明,仍然节约了大量的采暖和制冷能耗。建于法国巴黎的联合国教科文组织(UNESCO)的办公楼就是一例。
在德国,90年代利用高新技术设计建造了一座旋转式太阳能房屋。这是1994年建筑师待多·特霍把自己的住房设计成和向日葵一样,能在基座上转动跟踪阳光。房屋安装在一个圆形底座上,由一个小型太阳能电动机带动一组齿轮。该房屋底座在环行轨道上以每分钟转动3厘米的速度随着太阳旋转,当太阳落山以后该房屋便反向转动,回到初始位置。屋顶太阳能电池产生的电能仅1.3%被旋转电机消耗掉,而它所获得的太阳能量相当于一般不能转动的2倍。这是欧洲第一座由计算机控制的划时代的太阳追踪住宅。德国还有一栋由太阳能研究所设计的建在弗赖堡的零能耗住宅,投入使用两年多来,能源完全自给供通风,热水需用电,0.5kWh供取暖。在这栋住宅中,科学家综合采用了各种措施,如太阳能发电、热泵、氢气贮能器以及种种隔热建筑材料和建造方法。
在丹麦,1992年建成一栋由丹麦KAB咨询所设计的斯科特帕肯低能耗住宅,倍受世人关注,并获得1993年的世界人居奖(World Habitat Award),其技术措施主要包括①外墙、屋顶、楼板均设保温层,使用热传导系数较小的门窗玻璃;②利用智能系统对太阳能和常规供热系统进行智能调控,使热水保持恒定温度;③利用通风系统和夜间热补偿等技术减少住宅的热散失;④安装水表、能量表和双道节水阀装置及具有热回收性能的节水设备;⑤用雨水槽将雨水引至住宅区中央的小子湖里,再渗入地下。这些技术措施的应用,使住宅小区的煤气、水、电分别节约了60%、30%、和20%,而且改善了整个小区的环境。 日本1995年在九州市建了首栋环境生态住宅,它是依据日本环境生态住宅地方标准的要求建造的。其温热水由装在大楼南侧的太阳能集热器提供。这种太阳能集热器即使在下雨天也能使水加热到约55度。在大楼前装有风车,由风车发电为公共场所照明提供辅助电源。据测算,每住户一年用空调的电费和煤气费可节约57000日元。室外停车场的地面混凝土具有良好的透水性,来保持地下水的储备。
21世纪2000年上半年由美国福特(Ford)汽车公司在瑞典北部的Umea市建成的世界第一家绿色汽车经销展厅,被称为绿色区域(Green Zone)。其使用的能源全部来自太阳能、风能等可再生能源,同时通过天然采光和地热调节系统来源来减少能量使用,能源需减少了70%。并且还采用了一套特殊的地热调节装置对展室的采暖进行调节。汽车展厅、餐厅和加油站之间用暗连接起来,暗沟成了热量流通的渠道,使多余的热量可在三栋建筑物之间流通。例如餐厅厨房的多余热量就可用来给汽车展室增温。室内设置了顶窗以改善采光和降低照明能耗。此建筑拥有一座风力发电站,投入运行后可满足整个设施的能源需要。这座风力发电站坐落在海边的迎风的位置。 绿色区域设有废水循环和再生系统,公园的湖面和雨水是供水的主要来源,通过内部的废水处理系统进行再生与循环。下水不与当地废水系统连接,采用现场净化中水装置。整个"绿色区域"对市政供水的需求减少了90%,其中的10%供厨房和餐厅使用。设施内的空气用生长着的植物来净化。植物被称为"绿色过滤器"。三栋建筑的屋顶均以绿色植被覆盖,这对于当地气候和水循系统起了很好的作用。公司又把原来采用沥青的地面都换成了强化草皮。所有建材全部采用可以回收利用材料。这栋建筑的实践说明,通过组合运用现有的环境技术,有可能使能源需求减少60% 到70%。
去年1999年落成并交付使用的南买加公共图书馆分馆据说是由美国政府出资兴建的纽约市第一栋绿色建筑,此建筑被评为2000年"世界地球日"十佳建筑之一。设计人是C·斯达恩先生,他希望这座以绿色为主题的建筑对周围环境的破减低到最低限度,为使用者提供一个更亲切、更自然、更健康、更节能 的建筑环境。由于是改建工程,与两侧及后部相邻建筑只有2~3米的间隔。除了主立面外,其它三个方向均不可能开窗取得自然采光,因此在屋顶上设了三排朝南的天窗。天窗上装有可自动控制的遮阳卷帘、1/4弧形白色反射罩和电光源。阅览部分能通过自动或手动调节,使光线变得更均匀、柔和、舒适。在晴天时,2/3的采光来自自然光。图书馆内空调送回风风道可以切换。夏天是下送上回,由回风口直接将窗户进来的辐射热带走,冬天是上送下回,得以充分利用太阳的辐射热,这种系统十分节能。西向主立面的玻璃采用低辐射中空玻璃,具有对阳光的高透过率和对于长波辐射的高反射率,具有极好的保温性能。据施达恩先生称,此建筑比同等规模的建筑在采暖空调方面节能1/3,但作为绿色建筑初次投资比一般建筑高出许多,其造价相当于现有同等规模图书馆的2.5倍。
1991年美国在亚利桑那州沙漠中雄心勃勃地建造了一个人工生态系统"生物圈Ⅱ号"("生物圈Ⅰ号"指地球)也许是迄今最伟大的生态试验。这是一个全封闭、与外界完全隔绝的生物系统,复制了地球上7个生态群落,并有多个独立的生态系统,包括一小片海洋、海滩、泻湖、沼泽地、热带雨林及草场等。它的上面覆盖着密封玻璃罩,只有阳光可以进入,容纳有8名科技人员、3800种动物和1000万升水。植物为动物提供氧气和食物;动物和人为植物提供二氧化碳,人以动植物为食,泥土中的微生物转化为废物。试验了7年后,"生物圈Ⅱ号"二氧化碳含量过高而使系统失去平衡,试验宣告失败。这说明生物是一极其复杂的系统,今天的科技水平还不足以掌握和控制它。此试验虽然失败了,其意义却是深远的,预示着人类生态时代将到来。
2.建材方面
1) IM材料
在建材方面,90年代国际上已采用一种透明绝热材(Transparent Insulated Material简称TIM。它是一种透明的绝热塑料,可将TIM与外墙复合成透明隔热墙(Transparent Insulated Wall ,简称TIW)。TIW的前身是在漆成黑色的墙壁外再加一层玻璃,主要作用是减少因对流造成的热量损失,但热损失依然很高。TIW由保护玻璃、遮阳卷帘、TIM层、空气间层、吸热面层和结构墙体组成。TIM层做成透明蜂窝状,圆形的蜂窝状可最大限度地节约材料,蜂窝两侧粘有透明隔片,使蜂窝成密闭的透明孔,这样吸热面层不仅可以得到太阳辐射热,还可以得到TIM的反射能。TIM层在黑色吸热面外侧,在冬季可阻止吸热面向室外散热,在夏季可避免室外过多的热量进入室内。玻璃内的遮阳卷帘(卷帘外表面为高反射面)可调节抵达墙面的太阳辐射量。使用TIM的建筑据统计每年可节约能耗的200千瓦·小时/米2(kw·h/m2),已能完全或部分地取消常规采暖。在德国,它的价格为900~1200马克/m2。
2) 璃材料
玻璃材料的保温技术也是生态建筑节能的关键之一。随着现代化科技的不断发展在这一领域陆续出现了吸热玻璃、热反射玻璃、低辐射玻璃、电敏感玻璃、调光玻璃、电磁波屏蔽玻璃等。设计人可将它们组合成复合的构造形式,来达到生态建筑的保温和采光要求。下面简要介绍几种先进的复合玻璃的性能: · 吸热中空玻璃或热反射中空玻璃 吸热玻璃或热反射玻璃都是以吸收或反射的方式遮避太阳辐射热,但传热系数却很高将这两种玻璃与普通玻璃组合,中间封入特种气体做成中空玻璃,其传热系数大大降低。这种复合玻璃既能使太阳辐射的进入得到适当控制,又有较好的保温性能。 · 低辐射中空玻璃 钢种玻璃也由低辐射与普通玻璃复合而成。由于低辐射中空玻璃对于太阳光的高透过率和对于长波辐射的高反射率,使其具有极好的保暖性能,适合于以采暖为主的寒冷地区使用。 · 低辐射--热反射中空玻璃 将热反射玻璃放置在外侧,低辐射玻璃放置在内侧复合而成。它既能极好地遮避太阳的辐射热,又极低的传热系数,是一种理想的组合。 · 硅气凝胶特种玻璃 硅气凝胶是一种聚合物,外观如同有机玻璃,轻质透明而坚硬,是一种效能特别高的保 温隔热材料,其保温性能比同样厚度的泡沫塑料大四倍,在未来的玻璃产品中掺入硅气凝胶,可使门窗的保温性能大幅度提高。
3) 太阳能光电材料
在建筑中利用太阳能电池发电为建筑提供能源,既无污染,又无噪音,并由可再生能源提供燃料,它的初始原型是1908年由美国发明家弗兰克·舒曼(Frank Schuman)发明的,目前广泛运用航天和电子装备上。但由于价格的效率的制约,在建筑中一直不能得到推广。在美国,普通电费才8美分/度,而太阳能发电成本为30美分/度;而德国用于建筑上的太阳能硅电池价格约为1500马克/m2,每平方米的电池板每年可提供价值约75马克的电力,很不划算。要改变这种状况,首先要改进技术,大幅度降低成本,还要国家出面进行政策上的干预和经济上的引导。太阳能发电目前仅在一些试验性的生态建筑中使用。位于瑞士洛桑的瑞士联邦技术研究所的格莱泽尔(Michel Gratzel)教授在1991年仿照叶绿素的光合作用原理制作了第一个二氧化钛(TiO2)太阳能电池,世人称为"格莱泽电池"。这种太阳有电池估计可以使用20年,在阳光直射时,格莱泽尔电池的光电转化效率为 10%;在阴天时,它的效率更高,达到15%,这是太阳能硅电池望尘莫及之处。据称,格莱泽尔电池的价格只有晶体硅太阳能电池的1/5。这是因为二氧化钛是一种很便宜的天然矿物,目前广泛用于制造牙膏和涂料(即钛白粉),据说建造1平方米二氧化钛薄膜只需人民币1.3元
刚刚落下帷幕的、举世瞩目的悉尼奥运会也充分利用太阳能,为奥运会的成功举办增光添色。在奥林匹克大道上,矗立着19座象起重机吊臂一样的奇怪建筑物--多功能塔,它们安装了1524块高效率的光伏电池板,每年可发电16万千瓦。除能够满足塔自身用电需要和路灯照明外,还可向当地电网售电。这套被命名为"奥林匹克大街太阳能发电系统"获得了当地1999年度优秀工程设计奖。在运动员村的629栋住宅各自安装有光电池太阳能板。这些电池板与水平面约成8度倾角。在电池板的下面,装有功率为4千瓦的电流转换器,以便把太阳电池产生的直流电转换为交流电。每块电池板的最大功率为60瓦。这套屋顶太阳能发电系统同样与地方电网联网。
日本通产省资源能源厅不久前决定:自2000年度开始着手太阳能发电系统制造技术的开发,要加速写此系统的普及,必须大幅度改进现有系统的生产效率,确立低成本的制造技术。为此,在2000年度的预算方案列入12.4亿日元的投资。资源能源厅计划在2004年正式普及太阳能发电系统。
随着技术的日新月异,太阳能电池可与建筑材料和构件融为一体,形成一种崭新的建筑材料,成为建筑材整体的一部分,如太阳能光电屋顶、太阳能电力墙(Powerwall)以及太阳光电玻璃。这三种材料有很多优点:它们可以获取更多的阳光,产生更多的能量,还不会影响建筑的美观,同时集多各功能于一身,如装饰、保温、发电、采光等等,是未来生态建筑生命型材料。
· 太阳能光电屋顶
这是由于太阳能瓦板、空气间隔屋、屋顶保温层、结构层构成的复合屋顶。太阳能光电瓦板是太阳能光电池与屋顶瓦板相结合形成一体化的产品,它由安全玻璃或不锈钢薄板做基层,并用有机聚合物将太阳能电池包起来。这种瓦既能防水,又能抵御撞击,且有多种规格尺寸,颜色多为黄色或土褐色。在建筑向阳的屋面上装上太阳能光电瓦板,既可得到电能,同时也可得到热能,但为了防止屋顶过热,在光电板下留有空气间隔层,并设热回收装置,以产生热水和供暖。美国和日本的许多示范型太阳能住宅的屋顶上都装有太阳能光电瓦板,所产生的电力不仅可以满足住宅自身的需要,而且将多余的电力送入电网。
· 太阳能电力墙
电力墙是将太阳能光电池与建筑材料相结合,构成一种可用来发电的外墙贴面,既有具有装饰作用,又可为建筑提供电力能源,其成本与花岗石一类的贴面材料相当。这种高新技术在建筑中已经开始应用,如在瑞士斯特克波思有一座42米高的钟塔,两面覆盖着光电池组件构成的电力墙,墙面发出的部分电力用来运转钟塔巨大的时针,其余电力被送入电网。
· 太阳能光电玻璃
在建筑中,当今最先进的太阳能技术就是创造透明的太阳能光电池,用以取代窗户和天窗上的玻璃。世界各国的试验室中正在加紧研制和开发这类产品,并取得可喜的进展。日本的一些商用建筑中,已试验采用半透明的太阳能电池将窗户变成微型发电站,将保温--隔热技术融入太阳能光电玻璃,预计10年后将取代普通玻璃成为未来生态建筑主流。随着现代科技不断发展,太阳能发电系统将在技术上取得突破,从而大提高太阳能发电效率,拥有无限广阔的前景,将成为未来生态建筑不可或缺的一部分。今天的高新技术也许就是未来的普及技术。
除了太阳能,在世界的范围内探讨的可再生能源利用还包括风能、地热能、潮汐能、生物质能等等。例如在丹麦,由于对利用风能、生物有机物及太阳能等的研究起步较早,可再生能源技术已发展较为成熟,开始有可能性与传统能源进行竞争。丹麦《可再生能源发展技术(DPRE)》有力地促进了各种可再生源利用,这使得1980年可再生能源在其整个能源构成中仅占3%上升到目前的12%。预计到2030年,这个比例将达到35%。其中,风能总装机容量达790MW,发电量现在已占是力消耗量的7%,到2030年,预计将达到50%。
3.其他
21世纪对发达国家来说又被称为"零排放"的新世纪。这一概念在日本受到高度重视,日本政府拟定了《循环社会基本法》,不久前已提交国会审议通过。其基本精神是尽可能地利用资源和能源,减少废弃物的排放,以改变现代文明的"大量生产、大量废弃"的价值观,建立一个以"最佳生产、最佳消费、最少废弃"为特征的"特环型经济社会"。其理论根据可以说是"零排放"概念。 这一概念是设在东京的联合国大学 1994提出的,特别是对于制造业来说,就是应用清洁工艺、物质循环技术和生态产业技术等已有现成技术,实现对天然资源的完全利用和循环利用,不向大气、水和土壤遗留任何废弃物。换言之,就是以最小的投入谋求最大的产出,构筑产业间的网络,将某种产业废弃物或副产品作为一种产业的原材料。这是"后工业社会"的发展方向。
日本已有27家企业的百余座工厂,如啤酒制造厂、水泥厂、造纸厂、电子零部件厂等,实现了"零排放"。东京附近的山犁县有一个国母工业区,集中在那里的23 家中小企业从1995年起以国母工业园区工业会为窗口,与大学、县有关部门结成产、官、学零排放推进研究会,探索建立更大范围的"零排放"系统。在这里,各企业排出的废弃物经过回收和分类处理,提供给其他企业作原料,如废纸由造纸厂用来制造手纸;一般垃圾经过堆肥,供给县内果农作肥料;废塑料加工成固体燃料,提供给水泥厂作燃料,还计划建立垃圾发电站等。日本目"零排放"的企业还为数不多,但这是大势所趋,今后会有更多企业朝这个目标前进。前面介绍过的瑞典的"生态循环城"也是"零排放"为其奋斗目标之一。
从发达国家的经济结构来看,1993年美国的环保科技产量已达1470亿美元,超过了同时期计算机与制药行业的产值,被誉为"朝阳产业"。1992年德国有近5000家企业从事环保产品的开发与生产,产值达到800亿马克,从业人员近100万。根据国际经验,为遏制环境恶化的趋势,必须保证使环境保护投资占当年本国国民生产总值的1.5%~2.5%。
以上仅扼要地概括了生态建筑在国际出版物上的主观点与某些实践成果,并不全面,有的重要著述在本文中仅用一两句来介绍,有的甚至未能提及。由于篇幅所限不能不如此。
|